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Abstract

Radio maps are spatial representations of propagation
metrics that guide cellular network design, yet computing
them at high resolution with ray tracing is computation-
ally expensive. We investigate whether learning based su-
per resolution can reconstruct high resolution radio maps
from coarse simulations at reduced cost. Using Sionna city
scenes, we built a fully automated data pipeline to generate
realistic and consistent low and high resolution map pairs.
We trained and evaluated image super resolution models
and compared them to bicubic interpolation and non learn-
ing RME baselines. The models recover more realistic im-
ages with slightly finer structure and sharper coverage tran-
sitions than interpolation and yield higher PSNR and SSIM,
but are not on pair with the model’s performance on natural
image super resolution. A practical obstacle was realistic
transmitter placement, which we resolved through rooftop
snapping and controlled spatial layouts. Code is available
at: https://github.com/simonwanna/RaySR.

1. Introduction

Radio maps, also referred to as ”coverage maps”, depict
the spatial distribution of radio propagation metrics, such as
received signal power, path loss, or signal-to-interference-
plus-noise ratio, over a geographic area. They are central
to cellular network planning and optimization, guiding the
network engineer’s work of placing base stations, and set-
ting the antenna parameters such as power levels, for op-
timal performance in complex urban environments. High-
fidelity radio maps are typically generated either from ex-
tensive measurements or from physics-based simulators.

Prominent among these are ray-tracing tools, e.g.,
NVIDIA’s Sionna RT [2], which provide high accuracy by
explicitly modelling reflection, diffraction, and scattering.
However, electromagnetic propagation in realistic environ-
ments cannot usually be solved analytically and must be ap-
proximated numerically, and the computational load of such
methods increases rapidly with scene complexity and reso-
lution [9]. For example, finer maps need more rays over the
same area for a similar coverage density. As a result, full-

resolution ray-traced radio maps are often prohibitively ex-
pensive to compute when network planners require meter-
level resolution over large areas.

An appealing strategy is to decouple fidelity from sim-
ulation cost by computing a coarse map and then recon-
structing fine-scale detail algorithmically. Super-resolution
(SR) addresses this problem: given a low-resolution input,
recover a high-resolution output that preserves edges and
small structures. Classical SR relies on fixed interpolation
schemes that oversmooth fine-scale detail, while learning-
based SR leverages data-driven priors to restore sharper and
more realistic structures.

Applying SR to radio maps is distinct from natural-
image SR. Radio maps represent physical propagation
fields, often in logarithmic units, with smooth large-scale
structure and sharp discontinuities induced by occlusion
and antenna patterns. Multipath effects generate spatial
variations that interpolation typically fails to recover. Effec-
tive SR must therefore enhance detail while remaining con-
sistent with underlying propagation behaviour. In network
planning workflows, this enables a controllable accuracy-
cost trade-off: run a fast low-resolution ray tracing simula-
tion and reconstruct a denser map, which must be done with
lower computational cost.

In this work, we explore the feasibility of learning-based
SR as an alternative for high-resolution radio-map gener-
ation. Using pairs of high-resolution maps and their low
resolution counterparts, we study how well SR can recover
fine-scale structure and boundaries from coarse inputs, and
how the computational cost for this alternative compare to
other methods.

2. Background
2.1. Radio Map Estimation Methods
Radio maps, which visualize the radio frequency (RF) en-
vironment state, are crucial for tasks like enhancing spec-
trum efficiency and quality of service in wireless networks.
In practice, generating detailed radio maps is difficult, and
one often resorts to various estimation methods. The core
challenge in Radio Map Estimation (RME) is accurately
predicting the global RF parameter distribution from sparse
measurements. Existing RME methods are categorized into
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three major classifications: model-driven, data-driven and
hybrid methods.[1]

Model-driven methods utilize explicit propagation mod-
els to estimate the radio map, eliminating the need for
large training datasets but requiring substantial domain ex-
pertise. Representative approaches include ray-tracing and
path-loss prediction, as well as non-parametric kernel-based
reconstruction techniques such as adaptive RKHS methods
[4], which could be considered data-driven, but are classi-
fied by Feng et al. [1] as model-driven because they approx-
imate the physical channel gain function within a structured
superposition model. In contrast, data-driven methods rely
on measurement data and employ machine learning models
to predict unobserved signal strengths. These include clas-
sical interpolation methods and deep learning approaches
such as CNN-based RME [3] and UNet-based radio map
prediction [5]. Finally, hybrid methods integrate physi-
cal propagation priors with data-driven learning, achieving
higher accuracy in sparse sampling regimes by exploiting
domain knowledge, as demonstrated by physics-aided or
model-assisted spectrum cartography frameworks [7].

The RME problem is analogous to the computer vision
task of Image Super-Resolution (SR), as both are ill-posed
spatial reconstruction problems aiming to infer a com-
plete, high-resolution representation from sparse or low-
resolution input data which is why we hypothesise that a
SR-centric approach could be suitable.

2.2. Methods in Image Super-Resolution

Image super-resolution deals with converting a low res-
olution image to one of its high resolution counterparts.
While ill-posed, the challenge of upsampling an image
has been of great importance to many fields such as com-
puter vision and medicine [8]. Before deep learning, super-
resolution mainly employed interpolation algorithms. How-
ever, these methods come with problems such as noise am-
plification, blurring and computational complexity [8]. To
remedy the aforementioned issues that follow traditional
super-resolution techniques, researchers sought to combine
them with deep learning methods.

Deep learning based image super-resolution can gener-
ally be divided into several different architectures based on
where and how the upsampling occurs. For example, one of
the earlier models, SRCNN, used a ”pre-upsampling” strat-
egy in which the low resolution images were first enlarged
with traditional interpolation methods before the CNN re-
fined the image [8]. This approach reduced the difficulty of
learning since the most demanding part of the upsampling is
performed by the interpolation algorithm. Whilst popular, it
too came with the associated issues that plagued traditional
interpolation, such as blurring, noise, and computational
complexity since most operations are performed in high
dimensional spaces. To deal with this, post-upsampling

super-resolution was introduced. Here, most computations
were moved into low dimensional space by replacing the
upsampling algorithms with learnable layers in the final
stage of the network. Learnable upsampling operations,
such as transposed convolutions or sub-pixel convolution
layers, replaced fixed interpolation methods and enabled the
network to learn end-to-end mappings from low- to high-
resolution representations. These models demonstrated su-
perior reconstruction quality and efficiency [8].

To further improve upon the performance, methods such
as progressive upsampling and iterative up-and-down sam-
pling have been introduced. The former of the two aimed
to gradually refine and reconstruct the high-resolution im-
age through multiple stages, rather than doing it in one
step like in the previous frameworks. By decomposing
the upsampling, the learning difficulty is reduced and in-
creases performance [8]. Iterative up-and-down sampling
super-resolution is another method in which models such as
DPBN iteratively refine high-resolution predictions by it-
erating between upsampling and downsampling operations,
feeding the reconstruction errors back into the model [8].

Building on the architectures above, the PAN (Pixel
Attention Network) proposed by Zhao et al. introduces
a pixel-wise attention mechanism [10]. Unlike previous
methods that focus solely on channel attention, PAN gen-
erates 3D attention maps to emphasize informative high-
frequency details. This structural design improves feature
representation, yielding higher fidelity in image reconstruc-
tion.

Similarly, ESRT (Efficient Super-Resolution Trans-
former) combines CNNs with transformers to capture local
textures and maintain global context, whilst also ensuring
computational efficiency. This enables the network to keep
track of important regions and capture repetitive patterns
and structures that standard CNNs may miss [6].

In this work, we adopt PAN and ESRT as our main learn-
able super-resolution backbones and re-implement them
for radio-map super-resolution within a common PyTorch
Lightning framework (see Section 4.1).

3. Problem description
High-fidelity radio maps are indispensable for network
planning, but generating them at meter-level resolution
over large urban areas is computationally demanding.
Physics-based approaches such as ray tracing approximate
Maxwell’s equations in complex 3D scenes and must re-
solve multiple reflections, diffractions, and transmissions
per transmitter–receiver pair. The runtime scales with the
number of receivers (grid points), candidate rays per point,
scene complexity (triangles, materials), and allowed in-
teraction depth; memory and compute demands are also
high [9]. Full-wave CEM methods (e.g., FDTD, FEM,
MoM) are even more expensive and generally impractical
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for city-scale planning [9]. In practice, planners must eval-
uate many ”what-if” configurations (site, tilt, power, carrier)
across large regions, making repeated high-resolution sim-
ulations prohibitively costly. Parallel efforts in RME high-
light a broader need to reconstruct dense, accurate fields
from limited or coarse data, via model-driven, data-driven,
or hybrid methods [1].

We study a cost-accuracy trade-off that replaces a sin-
gle expensive high-resolution simulation with a two-stage
pipeline: (i) compute a coarse map at low resolution or
with reduced simulation fidelity, and (ii) reconstruct a
high-resolution map algorithmically. Concretely, let ΦHR

denote the target high-resolution radio map over a region Ω
at grid spacing ∆, and let ΦLR be a low-resolution or coars-
ened version at spacing r∆ with r ≥ 2, produced quickly
by a ray tracer or derived from sparse samples. The objec-
tive is to obtain Φ̂HR such that the total wall-clock time
T (ΦLR) + T (SR) is significantly smaller than T (ΦHR)
while maintaining accuracy adequate for planning tasks.

We cast the reconstruction as supervised super-
resolution. Given training pairs {(ΦLR,i,ΦHR,i)}, learn a
mapping

Φ̂HR = fθ(ΦLR),

optionally conditioned on auxiliary context (e.g., transmit-
ter metadata, frequency, basic geometric layers). The loss
initially follows the cited papers and are based on pixel-wise
fidelity in dB (MAE/RMSE), but also explores structural
similarity (SSIM), and task-aligned metrics such as height
at building occlusions. Because radio maps represent phys-
ical fields, outputs must remain plausible: preserve large-
scale path-loss trends, sharpen occlusion boundaries with-
out hallucinating non-physical artifacts, and maintain con-
sistent dynamic range.

Evaluation compares (a) full-resolution ray tracing, (b)
classical upsampling (bicubic), and (c) the proposed SR. We
report accuracy versus cost, investigation end-to-end speed-
ups

S =
T (ΦHR)

T (ΦLR) + T (SR)
,

The problem is thus to achieve near–high-resolution fidelity
for planning-relevant metrics at less computational cost,
leveraging learning-based SR to bridge the gap between fast
coarse simulation and expensive fine-grained propagation
modelling.

4. Methodology

In the following, we describe RaySR (pronounced “racer”),
our Lightning-based data generation and super-resolution
pipeline for producing high-resolution radio maps from
coarse simulations.

4.0.1. Scenes and radio-map solver
We utilise Sionna’s built in 3D city scenes (build-
ings, ground, materials) and load them into the Sionna
ray-tracing engine. For a given centre point and scene cov-
erage size, we use Sionna’s RadioMapSolver to compute
planar radio maps for a chosen metric (path gain, RSS, or
SINR). All samples share the same simulation backend and
interaction depth so that differences come from geometry
and transmitter layout, not from changing physics.

The transmitter placement is a integral part of our solu-
tion. Since we generate thousands of images which will not
all be examined, it is important that the transmitters are not
only placed realistically, but also generates a divers distri-
bution of data for the machine learning model to be trained
on. Sionna have no built in method to do this, neither does it
have any method to recognise buildings which transmitters
should be placed upon.

We separate transmitter placement from map com-
putation: a SceneTransmitterBuilder is respon-
sible for placing base stations in the scene, while a
RadioMapDataGenerator calls the solver and pack-
ages the data.

4.0.2. Height map and rooftop snapping
Before placing any transmitters, the generator scans the
scene geometry and builds a coarse height map over the
whole city at a fixed step size (a regular grid in (x, y)
with a height value per cell). Only objects above a mini-
mum height are considered “valid” (e.g., buildings, not the
ground plane). For each grid cell we store the maximum
object height and pre-compute the index of the nearest valid
neighbour for every invalid cell. When the builder pro-
poses a transmitter position, we convert it to height-map
indices and “snap” it to the nearest valid cell, seen in Fig.
1, where the boxes are building objects, coloured by height.
The transmitter is then moved horizontally to that cell and
placed on the roof with a small vertical margin. This snap-
ping step ensures that transmitters that would otherwise
land inside walls or in empty space are moved onto the roof
of the nearest building, which makes the layouts more real-
istic without hand-coding city-specific rules.

4.0.3. Transmitter placement: grid and sliding window
After the height-map computations we, for each sample:
• Choose a square coverage region of fixed size (e.g., (L×
L) meters) and randomize its centre inside the scene. In-
tuitively, this is a square “sliding” over the city from sam-
ple to sample.

• Inside this square, lay out (ntx) transmitters on an ap-
proximately regular 2D grid. Each transmitter is then ran-
domly perturbed within its grid cell.

This constitutes one valid scene sample which is sent to the
next phase. This process gives two sources of randomness:
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Figure 1. Demonstration of snapping mechanism for transmitters

(i) where the square lands in the city and (ii) where each
transmitter ends up inside its cell, which increases diversity
of layouts for the same scene.

Figure 2. Data sample image overlaid on the Etoile scene

4.0.4. Low- and high-resolution radio maps
Given the final transmitter positions and the chosen cover-
age square, we query the radio-map solver twice: once at a
coarse resolution (cell size (∆LR)) and once at a finer reso-
lution (cell size (∆HR = ∆LR/r)). Note: there are no down-
sampling, rather a real low resolution creation since this
most closely imitates a real scenario where you wouldn’t
have the high resolution images.

Both maps cover the same physical area and share the
same centre, so the high-resolution map is a refined version
of the coarse map rather than a different view. For scenes
with multiple transmitters, we collapse the per-transmitter
maps to a single “strongest-signal” map by taking the max-
imum over the transmitter dimension, mimicking typical
coverage planning maps. All values are converted to dB

(or dBm for RSS) and clipped to a floor value to avoid nu-
merical issues in low-signal regions.

4.0.5. Dataset construction and normalization
Each sample is stored as a small file containing the
low-resolution map, the high-resolution map, the transmit-
ter positions, the scale factor (r), and metadata. A Light-
ning DataModule lazily loads these files, splits them into
training and validation sets, and normalizes the maps to
([0,1]) using a fixed dB floor/ceiling so that the model al-
ways sees comparable dynamic ranges. This setup lets us
swap scenes or change the scale factor purely through con-
figuration, without touching the training code.

We also use a relatively small dataset size of 3200 im-
ages, 800 from each city, and out of these, 90% were used
for training and 10% for validation. This is mainly since we
did not see much improvement from increasing the dataset
size further (see discussions 6). Interestingly, the SR mod-
els was not trained on large datasets themselves, only 2000
images [10].

4.1. Super-resolution models and training

As super-resolution backbone we look for well cited papers
with available open source and clean code repository.

4.1.1. Pixel Attention Network architecture
Our PAN implementation follows the official reference
repository by Zhao et al. [10] and keeps the original net-
work structure (convolutional head, pixel-attention residual
blocks and upsampling tail). We make the following adap-
tations for the radio-map setting:

• We modify the input and output layers to, by default,
operate on single-channel maps in dB instead of three-
channel RGB images, while preserving the original num-
ber of feature layers and blocks.

• We make it optional to use a second feature channel based
on our height map, since our initial experiments showed
signal hallucinations in building cites, and we therefore
hypothesise this might help prevent such noise.

• We remove image-specific preprocessing and data aug-
mentations from the original code (e.g., RGB normaliza-
tion) and instead use the fixed dB normalization defined
in Section 4.0.5.

• We wrap the model in a PyTorch LightningModule that
exposes a common forward(ΦLR) interface and handles
loss computation, logging and optimizer configuration, so
PAN can be trained with the same loop as other imple-
mented models.

Apart from these adaptations for modality and frame-
work, the PAN architecture closely follows the official im-
plementation to keep our results comparable to the paper
[10].
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4.1.2. Efficient Transformer for Single Image Super-
Resolution

ESRT is implemented analogously, starting from the official
PyTorch code by Lu et al. [6]. After observing that PAN
sometimes struggled with capturing sharp discontinuities,
we introduced ESRT as a complementary, transformer-
based backbone to better model the structures in the ra-
dio maps. We retain the original lightweight hybrid design
(shallow CNN head, transformer blocks in low-resolution
feature space, and learnable upsampling), and adapt it to
our setting as follows:
• The network is configured for single-channel inputs and

outputs, matching our radio-map tensors, with the same
upscaling factor r as in the data pipeline.

• As for PAN, dataset-specific preprocessing from the ref-
erence code is disabled, and we reuse the common nor-
malization and batching provided by our Lightning Data-
Module.

• ESRT is also wrapped as a LightningModule and inte-
grated to our pipeline as PAN, enabling a better compar-
ison between the two backbones under identical training
conditions.
In summary, both PAN and ESRT are implemented as

close to their official repositories as possible, with only
small, necessary changes such as removing RGB channels
and integration into our Lightning-based training pipeline.

4.2. Training objective and metrics
During training and validation, we use a smooth variant of
the L1 loss. This choice follows the loss functions used in
the reference implementations of our baseline models [10]
[6]. We also verified experimentally that alternative losses
(including L2, and perceptual variants) did not provide im-
provements for our radio-map super-resolution case.

Performance evaluation focuses on peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) as well
as root mean squared error (RMSE), which despite its sim-
ilarity to PSNR in reflecting absolute reconstruction error
in dB space, primarily is included for its intuitive inter-
pretability. All metrics are computed between the predicted
and ground-truth high-resolution maps on a per-sample ba-
sis. SSIM captures structural fidelity, which is important for
preserving large-scale path-loss patterns and sharp coverage
transitions. We additionally compare all models against a
bilinear-interpolation baseline to contextualize the achiev-
able gains. The quantitative results are presented in Section
5.

In addition to numerical metrics, we also perform qual-
itative assessment. For each experiment, we visually in-
spect the generated high-resolution maps to verify that the
reconstructions are physically plausible and do not intro-
duce artefacts that would artificially inflate PSNR or SSIM.
This qualitative step ensures that the models do not exploit

metric-specific biases, for example, by oversmoothing or at-
tenuating regions in a way that improves the score but de-
grades the usefulness of the resulting radio maps. It is also
important to identify hallucinations, where the model might
induce a signal in places were buildings are located.

Finally, the feasibility of using super resolution as a tech-
nique is partially based on inference performance. Comput-
ing a higher resolution image with similar coverage requires
changes in the simulator. Simplest way is to emit more rays
such that they hit the new pixels not present in the lower
resolution simulation. Hence, computing the low resolution
image and then upsampling it with Super Resolution must
therefore be done quicker than simply generating the full
high resolution image with ray tracing. Because of this, we
compare Sionna’s solver runtime given different resolution
but with constant coverage, which requires using different
number of emitted rays, to see if there is indeed a speed up
from the proposed method.

5. Evaluation and results
We evaluate the super-resolution models using PSNR,
RMSE and SSIM on the radio-map test set and compare
them against a bicubic baseline. The focus is to assess how
much structure the models recover relative to simple inter-
polation and to quantify the performance gap to the values
reported in the original PAN and ESRT papers. Table 1
summarises the 2× results on our dataset.

Table 1. Model performance on the radio-map test set with 2x
scaling factor.

Method PSNR ↑ SSIM ↑ RMSE ↓
Bicubic 21.97 0.289 24.21
PAN 24.21 0.377 18.69
ESRT 14.25 0.5416 58.83

For completeness, we also evaluate the models at 2× scaling
factors and compare the results with the values reported in
the original PAN paper. Although the datasets differ, this
comparison provides a coarse indication of how much per-
formance is lost when moving from natural-image bench-
marks to our radio-map setting. The results in Table 2 be-
low therefore serve to contextualize our results rather than
to draw direct conclusions across datasets.

Table 2. Comparison of SR results across datasets

Method PSNR SSIM
PAN (Urban100 dataset 2x) 32.01 0.9273
PAN (Set14 dataset 2x) 33.59 0.9181
PAN (our dataset 2x) 24.21 0.377

We also compare Sionna’s ray-tracing runtime against
model inference speed to quantify potential cost savings.
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Table 3 verifies that the cost in speed of increasing num-
ber of rays (here 9M compared to 3M), to preserve cover-
age when increasing resolution, exceeds that of using SR
(S ≫ 1). The SR inference time for SR on a GPU was
negligible, hence no comparison of 3x and 4x.

Table 3. Sionna HR simulation time vs. LR + SR inference time

Method Resolution Runtime
HR Solver 1.5m 0.5171
LR Solver + SR (2x) 3m 0.0443s

In addition to the quantitative metrics, we inspect the re-
constructed maps visually to assess whether the models pre-
serve physically relevant structures. A representative exam-
ple is shown in Fig. 3.

Figure 3. Top row: LR, HR. Bottom row: Bicubic, PAN. (2x)

Comparing the low resolution (LR) to the high resolution
(HR) on the top row we notice that the LR have some noise
artefacts not present in the HR image. Purple indicates zero
signal and are usually from building sites. The bicubic in-
terpolation method (bottom left) hallucinates even more of
these noisy pixels, which represent a signal in pixels which
should have zero signal strength. The PAN model however
(bottom right), is to a great extent capable of keeping the
non-signal areas as they are.

Nevertheless, we can also see that in the high resolution
image that there are some areas where around every other
pixel is hit by a ray, and it therefore oscillates between pur-
ple and green/blue colours. While the model is doing a bet-
ter job than simple interpolation, this pattern is not fully

reconstructed.

5.0.1. Height map ablations

The height map shows the height of the buildings which
are non-zero in places where there should not be a signal.
Introducing the height map feature channel increased the
performance of PAN as seen in table 4.

Table 4. Model performance with and without height map feature
channel

Method PSNR ↑ SSIM ↑ RMSE ↓
PAN (without) 23.44 0.264 20.18
PAN (with) 24.21 0.377 18.69

6. Summary and discussion

The objective of this work is to evaluate whether learning-
based super-resolution (SR) can act as a viable substitute for
HR radio maps. Accordingly, we designed a complete data-
generation pipeline in Sionna, including automated trans-
mitter placement using a height-map snapping procedure,
and the creation of paired LR and HR radio maps for super-
vised training. Using these data, we trained two SR models,
PAN and ESRT, to reconstruct HR images from the courser
LR inputs, and evaluated the models using PSNR, SSIM,
and visual inspection, with bicubic interpolation as base-
line. The study aims to assess the achievable fidelity of the
image-reconstruction and the potential computational sav-
ings relative to running high-resolution ray tracing.

6.1. Interpretation of findings

The experimental results indicate that learning-based SR
can recover more structure from LR radio maps than bicu-
bic interpolation. The PAN model consistently improves all
metrics over the bicubic baseline, showing that the model
is able to reconstruct and preserve large-scale propagation
trends more effectively. We can especially note that the LR
and the bicubic interpolation hallucinates signals in places
where no signal is present. Looking at the HR image in the
top right image of figure 3, we clearly see the blue intro-
duced noise.

6.1.1. Ablation studies

Our ablation study shows that the introduction of a second
height channel improves the result significantly. The PAN
model was introducing noise similar to the Bicubic interpo-
lation prior to adding the extra feature. However, when the
feature is introduced the model makes a much better job in
those low signal areas. This intuitively makes sense since
the height map introduces a signal where the low signal are
usually in buildings or in a shadow caused by a building.

6



6.1.2. Model performance
ESRT does achieve higher SSIM but is far off in the PSNR
and RMSE. The model was expected to recover global
structure better with its transformer based backbone but
struggled a lot with mean collapsing, i.e. the model regress-
ing its predictions towards some average value and loos-
ing expressivity. The repository implementation was not
as straight forward as the one from PAN and might have
needed other modifications to work as well as expected.
This however, highlight the importance of our qualitative
analysis since the high SSIM score might indicate better re-
sults than the model achieved. Only from inspecting the
reconstructed images visually, one could see that the impor-
tance of a high PSNR is critical to the image quality and can
not be compensated for by a high SSIM.

6.1.3. Data considerations
Although the results indicate that PAN performed relatively
well compared to the interpolation baseline, the achieved
scores remain below those reported in the work of Zhao et
al. on standard super-resolution benchmark datasets shown
in table 2.

This indicates that the degradation might not be model-
specific but intrinsic to the propagation domain. Radio
maps exhibit smooth path-loss gradients combined with
sharp occlusion-induced discontinuities, which might make
the SR task more challenging than reconstructing textured
natural images. In addition, because the data is gener-
ated from top-down projections with limited scene diversity,
many samples share similar building layouts and transmitter
configurations, reducing variation in the training set. Con-
sequently, the models may not fully capture the range of
propagation patterns present in more diverse environments.

6.1.4. Computational considerations
The results demonstrate a clear speed advantage when
combining low-resolution simulation with super-resolution
(LR+SR) compared to native high-resolution (HR) ray trac-
ing. As shown in Table 3, the HR solver requires around
half a second, while the LR+SR pipeline takes only consid-
erably less in this configuration.

It must be noted that this is not a perfectly fair com-
parison: true HR ray tracing requires a higher density of
rays to maintain consistent coverage across more pixels. If
one merely increases resolution without more rays, cover-
age gaps occur while computational cost might be very sim-
ilar. The LR+SR approach bridges this gap by computation-
ally interpolating structure, providing superior coverage at
a fraction of the GPU cost. While overheads in data trans-
fer and scene snapping exist and made our comparison a bit
difficult, the inference time remains negligible.

Nevertheless, with more transmitters and more complex
scenes, the HR computations is expected to increase while

the SR should be constant. These findings suggest a sub-
stantial speedup, though real-world performance may vary
based on specific testing environments and system over-
heads. If the SR accuracy is retained is left for future stud-
ies.

6.2. Practical Implications
The results suggest that learning-based SR represents a
promising, albeit preliminary, candidate for accelerating ra-
dio map workflows. By decoupling the ray-tracing grid
from the final visualization density, there is potential for
engineers to evaluate a higher volume of transmitter con-
figurations. While our current implementation is limited
to simplified setups, this approach hints at a scalable path
for modeling 5G/6G deployments without the exponential
increase in hardware resources typically required by high-
resolution physics-based simulations.

Qualitative evaluation indicates that SR-reconstructed
maps preserve large-scale path-loss trends and shadowing
effects better than classical interpolation, though they re-
main distinct from high-resolution ground truths. This sug-
gests that while SR is not yet suitable for high-precision
final validation, it could eventually serve early-stage ”what-
if” planning phases where rapid iteration and relative cov-
erage trends are prioritized over absolute meter-level accu-
racy.

The practicality of this method currently remains depen-
dent on model robustness. Since our models were trained on
a limited set of synthetic urban scenes, their performance in
real-world environments—characterized by diverse archi-
tectural styles and multi-transmitter interference—remains
unproven. Nevertheless, the findings support the hypothesis
that SR is a feasible direction for bridging the gap between
coarse, low-cost simulations and high-density propagation
fields, warranting further investigation into its reliability in
complex propagation environments.

6.3. Limitations and Future Work
While the efficiency gains are evident, several constraints
limit the direct applicability of our current model to univer-
sal urban environments:
• Scenario Complexity: Our training used simplified

isotropic transmitter configurations. Real-world com-
plexities, such as frequency-dependent diffraction, beam-
forming patterns, and diverse frequency bands, may intro-
duce propagation structures that our experiments did not
address, leaving their learnability an open question.

• Transmitter Density: Our experiments focused on lim-
ited transmitter counts. In realistic multi-cell deploy-
ments, signal interference and cell-edge discontinuities
become more complex. Future studies should verify if the
SR accuracy is maintained when predicting these high-
interference regions.
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• Environmental Generalization: The limited scene di-
versity in our synthetic dataset may lead to performance
degradation in cities with significantly different architec-
tural styles, such as highly industrial zones or historical
centres with irregular building layouts.

• Input Feature Richness: While the inclusion of a second
channel (height map) yielded significant gains, relying on
single-metric path-loss maps remains limited. Incorporat-
ing richer auxiliary data, such as for example binary line-
of-sight (LoS) indicators, represents a critical next step to
resolve discontinuities and shadow boundaries more ac-
curately.
Future work should focus on scaling the transmitter

count and complexity to determine the point where the fi-
delity of SR reconstructions might diverge from ground
truth propagation, particularly in complex ”deep-shadow”
urban areas.
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